Portable and Scalable MPI Shared File Pointers using IOFSL A

P. Beckman, J. Bent, J. Cope, G. Grider, K. Iskra, T. Jones,
D. Kimpe, S. Poole, J. Nunez, R. Ross, L. Ward

Introduction - 1/0 Forwarding

Modern massively parallel systems exhibit unique 1/O architectures and |/O
requirements. For example, compute nodes might not have direct outside
access or might be running microkernels incapable of fully supporting al
|/O functionality. At the same time, contemporary parallel file systems

struggle to handle the massive amount of concurrency exposed by these
machines. /O forwarding was introduced to tackle these issues.

The basic idea?

Instead of performing your own /O, have it done by some other entity
that might be better suited or located.

Example: Blue Gene/P 1/O Architecture

BG/P Tree Ethernet InfiniBand Serial ATA
6.8 Gbit/sec 10 Gbit/sec 16 Gbit/sec 3.0 Gbit/sec

o L Lo

---------------- HW bottleneck is
here. Controllers

can manage only
4.6 Gbyte/sec.

Peak I/O system
bandwidth is
78.2 Gbyte/sec.

| | ‘ | I

Gateway nodes Commodity Storage nodes Enterprise storage
run parallel file system network primarily run parallel file system controllers and large racks
client software and carries storage traffic. software and manage of disks are connected via

forward I/O operations incoming FS traffic InfiniBand or Fibre
from HPC clients. from gateway nodes. Channel.

640 Quad core PowerPC 900+ port 10 Gigabit 136 two dual core | 7 DataDirect S2A9900
450 nodes with 2 Gbytes Ethernet Myricom Opteron servers with controller pairs with 480
of RAM each switch complex 8 Gbytes of RAM each | Tbyte drives and 8

InfiniBand ports per pair
Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

IOFSL

IOFSL — 1/O Forwarding Scalability Layer

» Portable 1/0 Forwarding Implementation
» Production Quality — not just a research project
» Currently provides /O forwarding on many leadership class machines

(IBM BlueGene/P, Cray XT series)

JOFSL provides features not commonly found in other forwarding
implementations:

» Flexible extensible design: easy to adapt to new systems and to add
support for new filesystems.

» Accelerates | /O research by providing a customizable, open source
implementation.

» Manipulation of 1/0O requests instead of merely forwarding them; used to

implement optimizations such as request merging and request scheduling.

Argonne

NATIONAL LABORATORY

THE UNIVERSITY OF

CHICAGO

Shared File Pointers using IOFSL Extended Attributes

» At MPI_File_open time, a 64 bit cookie is generated and combined
with the file handle to form a unique identifier for the shared file pointer.
This identifier is broadcasted to all the ranks as part of the open process.

» The shared file pointer (stored in an extended attribute on the forwarding
server) is created on demand.

» When the file is closed, rank O performs a reduction to query if any of
the other ranks created the shared file pointer, and removes it if needed.

» [he name space for attributes is shared between the forwarding servers,
and a server will relay the request to the “owner’ of the attribute when
needed. This is important for machines such as BG/P where a compute
node can only access the closest |/O node.

compute nodes compute nodes

|/0 forwarding
nodes

machine boundary

parallel
filesystem

MPI Shared File Pointer 1/0

MPI provides a logical file pointer (“shared file pointer”) jointly
managed by all the ranks that opened the file.

The current default implementation in ROMIO uses a file to hold the
current value of the shared file pointer, and relies on file locking to ensure
non-conflicting access to the file. There are a number of disadvantages to

this approach:
» Not all file systems support file locking

» Concurrent write access to the same region of a small file can have a
high access cost in a distributed file system.

Extended Attributes in IOFSL

We extended zoidfs_getattr and zoidfs_setattr to support storing
and retrieving extra information associated with a file, in a way similar to
extended attributes.

» [hese attributes remain in the forwarding server and are never stored on
the filesystem (and don't require filesystem support).

» In addition to CREATE, REMOVE, GET and SET, an atomic
FETCH_AND_ADD operation is implemented.

Related Work

|OFSL supports a distributed atomic file append mode that is independent
of MPI.

» When invoking zoidfs write, users indicate that the application data
should be append to the file.

» When the server receives the atomic append request, it atomically
fetches the current end of file position and increments the end of file
position. The server stores the application data at the previously
identified end of file position.

» [he file position is stored in a distributed hash table accessible by all

|OFSL servers.

» [he server returns the file position that the application data was stored
at to the user in a hint.

The Open Trace Format (OTF) toolset uses the IOFSL distributed atomic
append capability to store trace data generated by leadership-class
applications.

» |OFSL servers aggregate multiple (OTF) trace event streams.

» Multiple OTF trace event streams are are atomically appended into one
or more files.

» OTF uses an index of event locations to merge and reorder the files
during trace post-processing steps.

Using this file structure and IOFSL’s non-blocking | /O features, the OTF
and VampirTrace research groups can efficiently generate application traces
running at 200,000 cores on the JaguarPF Cray XT5 system at Oak Ridge
National Laboratory.

We welcome all contributions and collaborations:

» IOFSL Project website: http://www.iofsl.org/

» |[OFSL Wiki and Developer website:
http://trac.mcs.anl.gov/projects/iofsl/wiki

» IOFSL Public Git repository: http://git.mcs.anl.gov/iofsl

Contact us at io-fwd-devel@lists.mcs.anl.gov

zoidfs_getattr
zoidfs_setattr
CREATE
REMOVE
GET
SET
FETCH_AND_ADD
MPI_File_open
http://www.iofsl.org/
http://trac.mcs.anl.gov/projects/iofsl/wiki
http://git.mcs.anl.gov/iofsl
io-fwd-devel@lists.mcs.anl.gov

